
TRELLISES AND TRELLIS-BASED

DECODING ALGORITHMS FOR

LINEAR BLOCK CODES

Technical Report

to

NASA

Goddard Space Flight Center

Greenbelt, Maryland 20771

Grant Numbers: NAG 5-931

NAG 5-2938

Report Number: 98-003

Principal Investigator: Shu Lin

Department of Electrical Engineering
University of Hawaii at Manoa

2540 Dole Street, Holmes Hall 483
Honolulu, Hawaii 96822

April 20, 1998





TRELLISES AND TRELLIS-BASED

_ECODING ALGORITHMS FOR

LINEAR BLOCK CODES

Part 3

Shu Lin and Marc Fossorier

April 20, 1998





/,,, ../- '.if;_.
iv

10 THE VITERBI AND DIFFERENTIAL

TRELLIS DECODING ALGORITHMS

Decoding algorithms based on the trellis representation of a code (block or con-

volutional) drastically reduce decoding complexity. The best known and most

commonly used trellis-based decoding algorithm is the Viterbi algorithm [23,

79, 105]. It is a maximum likelihood decodia_g algorithm. Convolutional codes

with the Viterbi decoding have been widely used for error control in digital

communications over the last two decades. This chapter is concerned with

the application of the Viterbi decoding algorithm to linear block codes. First,

the Viterbi algorithm is presented. Then, optimum sectionalization of a trellis

to minimize the computational complexity of a Viterbi decoder is discussed

and an algorithm is presented. Some design issues for IC (integrated circuit)

implementation of a Viterbi decoder are considered and discussed. Finally, a

new decoding algorithm based on the principle of compare-select-add is pre-

sented. This new algorithm can be applied to both block and convolutional

codes and is more efficient than the conventional Viterbi algorithm based on

the add-compare-select principle. This algorithm is particularly efficient for

175



176 TRELLISESANDTRELLIS-BASEDDECODINGALGORITHMSFORLINEARBLOCKCODES

rate-1/nantipodalconvolutionalcodesandtheirhigh-ratepuncturedcodes.

It reduces computational complexity by one-third compared with the Viterbi

algorithm.

10.1 THEVITERBI DECODING ALGORITHM

The Viterbi algorithm is based on the simple idea that among the paths merging

into a state in the code trellis, only the most probable path needs to be saved

for future processing and all the other paths can be eliminated without affecting

decoding optimality. This elimination of the less probable paths from further

consideration drastically reduces decoding complexity. The path being saved is

called the survivor. Therefore, there is a survivor at each state in the trellis

at every level. The survivors at each level of the code trellis are extended to

the next level through the composite branches between the two levels. The

paths that merge into a state at the next level are then compared and the most

probable path is selected as the survivor. This process continues until the end

of the trellis is reached. At the end of the trellis, there is only one state, the

final state or/, and there is only one survivor, which is the most likely codeword.

Decoding is then completed.

Viterbi decoding of a linear block code based on a sectionalized trellis dia-

gram T({ho, hi ..... hL}), with section boundary locations 0 = ho < hi < ... <

h6 = N, is carried out serially, section by section, from the initial state a0 to

the final state a I. Suppose the decoder has processed j trellis sections up to

time-hi. There are IEh_(C)I survivors, one for each state in Ebb(C). These

survivors together with their path (or state) metrics are stored in memory.

To process the (j + 1)-th section, the decoder executes the following steps:

(l) Each survivor is extended through the composite branches diverging

from it to the next state level at time-hi+l.

(2) For each composite branch into a state in Ehi.,(C), find the single

branch with the largest (correlation) metric. The metric computed is

the branch metric.

(3) Replace each composite branch by the branch with the largest metric.



(4)

THE VITERBI AND DIFFERENTIAL TRELLIS DECODING ALGORITHMS 177

Add the metric of a branch to the metric of the survivor from which the

branch diverges. For each state a in Ehj+t (C), compare the metrics of

the paths converging into it and select the path with the largest path

metric as the survivor terminating at state a. This step is called the

add-compare-select (ACS) procedure in the Viterbi algorithm.

The decoder executes the above steps repeatedly,

reaches the final state aS. At this point, there is

which is the decoded codeword and the most likely

bits corresponding to this decoded codeword are

The decoding window is simply the code length.

section by section, until it

one and only one survivor,

codeword. The information

then delivered to the user.

Using the above decoding algorithm, the total number of operations (addi-

tions and comparisons) can be computed easily. This number can be reduced

significantly if sectionalization of a trellis is done properly [60]. This will be

discussed in the next section.

10.2 OPTIMUM SECTIONALIZATION OF A CODE TRELLIS:

LAFOURCADE-VARDY ALGORITHM

In decoding a block code with the Viterbi algorithm, the total number of com-

putations depends on the sectionalization of the trellis diagram for the code. A

sectionalization of a code trellis for a code C that gives the smallest total num-

ber of computations is called an optimum sectionalization for C. An optimum

sectionalization is not necessarily unique. In the following, an algorithm for

finding an optimum sectionalization is presented. This algorithm was devised

by Lafourcade and Vardy [60 I.

The Lafourcade-Vardy (LV) algorithm is based on the following simple fact:

(F) For any integers x and y with 0 <_ x < y <_ N, a section from

time-x to time-y in any sectionalized trellis T(U) with z,y E U and

z % 1,z + 2,...,y- 1 ¢ U is identical.

Let _(x,y) denote the number of computations required in steps (1) to (4) of

the Viterbi algorithm to process the trellis section from time-x to time-y in any

sectionalized code trellis T(U) with z, y E U and z + 1, z + 2 .... y - 1 ¢ U.

It follows from the above simple fact (F) that _o(z, y) is determined only by z

and y. Let qo,,i,,(z, y) denote the smallest number of computations of steps (1)



178 TRELLISES AND TRELLIS-BASED DECODING ALGORITHbIS FOR LINEAR BLOCK CODES

Table 10.1. Opt;mum sect;onalizat;ons.

Code Optimum Sectionalization U Complexity Complexity

_mi°(0, N) N-section

RMI,6 {0, 4, 8, 12, 16, 24, 32, 40, 48, 806 2,825

52, 56, 60, 63, 64}

RM2,e {0,8,16,32,48,56,61,63,64} 101,786 425,209

RMa,6 {0, 8, 16, 24, 32, 40, 48, 56, 64} 538,799 773,881

to (4) to process the trellissection(s) from time-z to time-y in any sectionalized

code trellisT(U) with z,y E U. The value, _,ni,(0,N), gives the total number

of computations of the Viterbi algorithm for the code trelliswith an optimum

sectionalization. Then, it follows from (F) and the definitions of _(x,y) and

qOmin(X,y) that

qOmin(O,y) = { min {_o(0,y),_o(O,1), o<.<ymin{_o,.i.(O, x)+ _o(z, y)}}, forlfory <y<_N,=1.

(10.1)

We can compute _min(0, Y) for every y with 0 < y < N efficientlyin the

following way: The values of _o(x,y) for 0 < x < y < N are computed using

the structure of the trellissection from time-z to time-y. First, the value of

_o,,,ia(O, 1) is computed. For an integer y with 1 < y _ N, to,,,in (O, y) can

be computed from _O,nln(O,x) and _(x,y) with 0 < x < y. By storing the

information when the minimum value occurs in the right-hand side of (10.1),

an optimum sectionalization is found from the computation of _o,.i.(O, N).

Example 10.1 Table 10.1 gives the optimum sectionalizations for three RM

codes of length 64 using the LV algorithm.

AA



THE VITERBI AND DIFFERENTIAL TRELLIS DECODING ALGORITHMS 179

10.3 SOME DESIGN ISSUES FOR IC IMPLEMENTATION OF

VlTERBI DECODERS FOR LINEAR BLOCK CODES

Theoretically, any linear block code can be decoded by applying the Viterbi

algorithm to a trellis for the code. However, practical limitations preclude

the application of this algorithm to many good codes with long block lengths.

The main reasons are the increases in state complexity, state connectivity, and

branch complexity of the trellises for good block codes as the length of the

codes increases. Much of the research on maximum likelihood decoding of lin-

ear block codes with the Viterbi algorithm over a code trellis has focussed on

the minimization of the number of computations required for decoding a re-

ceived sequence. If the actual decoding is intended to be performed using a

stored program approach (a software implementation) that executes the oper-

ations needed to decode a received sequence sequentially, then this approach

will lead to the fastest decoding speed. However, if an IC (hardware) imple-

mentation is intended, then many other factors besides the number of decoding

computations must be considered. We must consider the factors that affect the

circuit requirements, wire-routing within an IC chip, chip size, circuit utiliza-

tion, power consumption, ACS computation speed, and other implementation

issues. As a result, an alternate approach that is more suitable for IC imple-

mentation is desired.

For IC implementation of a Viterbi decoder for a linear block code, besides

the state and branch complexities, other important trellis structural properties

that should be included in the design considerations are state connectivity,

the parallel structure, regularity, and symmetry. Proper use of these structural

properties may result in a simpler decoding circuit and a higher decoding speed.

Optimum sectionalization in terms of minimizing the computational com-

plexity, in general, results in a non-uniformly sectionalized trellis diagram. In

a Viterbi decoder, quantities such as the branch labels, survivor path metrics,

and survivor path labels generally reside in word registers, which are basically

an ordered sequence of bit registers. The same hardware is used to process all

trellis sections. If a register must store a particular variable, such as a branch

metric or a state metric, it must be designed to accommodate the largest value

of the variable over all trellis sections. Since the section lengths for a non-

uniformly sectionalized trellis vary from one section to another, the registers



180 TRELLISESANDTRELLIS-BASEDDECODINGALGORITHMSFORLINEARBLOCKCODES

involved must be designed based on the longest section. This may increase the

relative complexity of an IC Viterbi decoder. Therefore, for IC implementation

of a Viterbi decoder, a uniformly sectionalized trellis is more desirable.

Although a minimal trellis reduces the state and branch complexities, the

states are densely connected. For long codes, this dense connection between

the states causes serious wire-routing (interconnection) problems within an IC

chip for hardware implementation of a Viterbi decoder and requires a large area

of the chip (or a multilayer chip) to accommodate the decoding circuit. Fur-

thermore, interconnections increase internal communications between various

parts of the decoding circuit, which slow down the decoding speed and increase

power consumption. Let PmAx(C) be the maximum state space dimension of a

minimal trellis for a code C. Then the number of registers required to store the

survivor paths and their metrics must be 2p=-,{c). If a separate ACS circuit

is required for processing each state at each trellis level, then 2p-"=(c) ACS

circuits are needed. If the differences between pm,x(C') and the state space

dimensions at many section boundary locations are large, then many of the

registers and ACS circuits are not used during the decoding process. This re-

sults in poor hardware utilization efficiency. All the above problems may be

solved or partially solved by using a non-minimal trellis with a proper parallel

decomposition, as discussed in Chapter 7. Regularity among the trellis sections

also helps to overcome the above problems and reduces decoding complexity.

Symmetry structure, such as mirror symmetry, allows bidirectional decoding,

which speeds up the decoding process. Therefore, for hardware implementation

of a Viterbi decoder for a linear block code, a non-minimal trellis may result

in a simpler and faster decoding circuit with a higher hardware utilization effi-

ciency. In design, both minimal and non-minimal trellises should be considered

and the one that results in a simpler circuit and a higher decoding speed should

be used.

In the following, we examine some key factors that affect the decoding com-

plexity and speed of a Viterbi decoder based on a minimal or non-minimal trel-

lis. The non-minimal trellis structure presented in Section 7.1 reduces internal

communications and allows independent parallel processing of the subtreUises,

while decreasing the complexity of an IC Viterbi decoder. It has significant

advantages over the minimal trellis for IC implementation of a Viterbi decoder.



THE VITERBI AND DIFFERENTIAL TRELLIS DECODING ALGORITHMS 181

10.3.1 Hardware Utilization Efficiency and Effective Computational

Complexity

Consider an IC Viterbidecoder based on an L-sectiontrellisfora linear(N, K)

block code C with sectionboundary locationsat h0 = 0,hi,h2,...,hL = N.

While many VLSI structureshave been describedfor a Viterbi decoder [10,

38, I00],the most widely implemented structureisbased on the ACS-array

architecture,wherein each abstract state in the trellismanifests itselfas a

physical ACS circuiton the IC, and the same ACS circuitsare repeatedly

used for all levelsin the trellis.The ACS circuitscan be labeledACS-I for

I _<l _< 2pL....(c),where pL.m_x(C) isthe maximum statespace dimension

ofthe L-sectionminimal trellisfor C. We assume that PL.max(C) isfixedno

matter whether a minimal trellisor a non-minimal trellisisused in the decoder

design.

The ACS circuitswork as follows.At time-0,the metricsofthe ACS circuits

corresponding to the originatingstatesofeach parallelsubtrellisare initialized

to 0. At time-hi, the ACS-/ corresponding to state cr(l) E _,_(C) at the

end of section-1 of the trellis, for 1 < 1 < ]Eh,(C)l , has the metric of state

cr¢0. The index of the surviving branch into state o"l_) is stored in ACS-/.

Continuing in this way, at time-h_, for 1 < i < L, ACS-/corresponding to state

a (l) E Eh, (C) will have the metric for a (0 and a sequence of i survivor branch

indices corresponding to the most likely path from the initial state to cr(0.

Whenever the decoder is processing the trellis at a level at which the size

of the state space is smaller than 2pL.... {c) a number of ACS circuits will be

idle. If the number of inactive ACS circuits is large and occurs often during

the. decoding process, the hardware utilization efficiency becomes poor. For

example, consider the minimal 8-section trellis for the (64, 42) RM code, RM3,s.

This trellis has a state space dimension profile (0, 7, 10, 13, 10, 13, 10, 7, 0) with

P8..... x(C) = 13. For a Viterbi decoder designed based on this trellis, at time-

ht and -hT, there are 2 t3 - 27 = 8,064 inactive ACS circuits. At time-h2, -h4

and -he, there are 213 - 2 l° = 7,168 inactive ACS circuits. Only at time-ha

and -hs, all the ACS circuits axe active. We see that the hardware utilization

efficiency is very poor for a Viterbi decoder for the RM3,6 code based on the

minimal 8-section trellis using the ACS-array architecture.



182 TRELLISESAND TRELLIS-BASED DECODING ALGORITHMSFOR LINEARBLOCK CODES

Hardware utilization efficiency can be improved by a proper parallel decom-

position of a minimal trellis into parallel isomorphic subtrellises. The decom-

position results in a non-minimal trellis with the same maximum state space

dimension pZ,,max(C). Therefore, the number of ACS circuits in the ACS-array

is still the same, but the number of active ACS circuits is increased at many, if

not all, section boundary locations. We illustrate this with an example. Using

the method presented in Section 7.1, the minimal 8-section trellis for the (64, 42)

RM code, RM3,6, can be decomposed into a non-minimal 8-section trellis with

128 parallel isomorphic subtrellises, each having a state space dimension pro-

file (0, 6, 6, 6, 3, 6, 6, 6, 0). Therefore, the state space dimension profile for the

overall trellis is (0, 13, 13, 13, 10, 13, 13, 13, 0). We see that the maximum state

space dimension is still Ps.max(C) = 13. However, for a decoder based on this

non-minimal trellis, all 8,192 ACS circuits are active all the time, except at

time-h4. This greatly improves the hardware utilization efficiency.

For a trellis (minimal or non-minimal) that consists of parallel subtrellises, all

the subtrellis decoders operate independently in parallel without communica-

tion between them. From the standpoint of speed, the effective computational

complexity of decoding a received sequence is defined as the computational

complexity of a single parallel subtrellis (viz. the minimal trellis for a sub-

code C _) plus the cost of the final comparison among the survivors presented

by each of the subtrellis decoders. The time required for final comparison is

generally small relative to the time required for processing a subtrellis and this

comparison can be pipelined. Since all the subtrellises are processed in parallel,

the speed of decoding is therefore limited only by the time required to process

one subtrellis. If a minimal trellis does not have enough parallel structure and

decoding speed is critical, parallel decomposition can be used to reduce the

effective computational complexity and thus to gain speed.

10.3.2 Complexity of the ACS Circuit

The converging branch dimension profile (CBDP), (_1,$2,...,$L), defined in

Section 6.2 also affects decoding speed and complexity. Each component _i

is the base-2 logarithm of the number of composite branches converging into

a state at a particular level of the trellis. The number 2_' is called a radix

number in the IC literature. At level-/of the trellis, each ACS circuit has to



THE VITERBI AND DIFFERENTIAL TRELLIS DECODING ALGORITHMS 183

perform _i stages of a tree-type two-way comparison to find the best incoming

branch. Hence, a reduction in the values of the components in the CBDP of

a trellis will improve decoding speed and reduce the complexity of each ACS

circuit. If the radix numbers in a minimal trellis are too large, then parallel

decomposition can be used to achieve smaller radix numbers, and hence to

reduce the complexity of each ACS circuit and to increase the decoding speed.

10.3.3 Tracebac__ Complexity

Even though the branch and state metrics are computed and updated in the

Viterbi decoder at every level of the trellis,the best (or most likely) path

through the trellismust be determined. The process of determining the best

path is called traceback in the literature.

Recall that the number of parallel branches in a composite branch in the

i-th section of an L-section trellisfor C with section boundary locations in

{ho, hi .... , hn} is

I '_ I 2k'c_.. _,Ch,_l,h * = -- , .

For a Viterbi decoder based on the minimal trellis, the ACS-[ corresponding to

state a Ct) E ]gh,(C) for 1 < i < L must store 6_(C)+ k(Ch._,.h,) bits in order

to identify which of the 2 a'Cc} composite branches converging into state a (l) is

chosen and which of the 2 _{c_,-''h,) parallel branches survives. Therefore, each

ACS-I needs to store

L

_(6i(C) + k(C,,,_,,h,)) = K (10.2)
i=!

bits in order to identify the sequence of survived incoming branches and to

determine the decoded path. If this number is too large, parallel decomposi-

tion can be used to reduce it. Consider a non-minimal trellis with 2 '1 parallel

subtrellises obtained by parallel decomposition of the minimal L-section trellis

for C based on a subcode C'. If a Viterbi decoder is designed based on this

non-minimal trellis, then the number of bits that must be stored for each ACS-I

is
t.

__,(6,(C') + k(C;,,_,.h,)) = dim(C'). (10.3)
i=l



184 TRELLISESAND TRELLIS-BASED DECODING ALGORITHMS FOR LINEAR BLOCK CODES

Since dim(C _) = K- q < K, the ACS circuits based on this non-minimal trellis

design require less storage than for the design based on the minimal trellis. The

total savings in storage in all the 2pL.... (c) ACS circuits are

2.L .... (c) (K - dim(C')). (10.4)

This is a significant savings.

10.3.4 ACS-Connectivity

The hardware implementation of a Viterbi decoder is severely affected by the

physical placement of the ACS circuits and the need to route information be-

tween them. The routing complexity should be minimized in a Viterbi decoder

IC design in order to reduce the size of the IC chip.

The basic operations performed by an ACS circuit are: addition of the branch

metrics of the incoming branches to the state metrics of the corresponding orig-

inating states, comparison of the resulting sums to find the best one, selection

of the surviving sum as the new state metric and the corresponding surviving

branch label. The ACS-array architecture is usually dominated by the area

required by the interconnections to transfer the state metrics. For a state

o"It} E Eh,(C) with 1 < l < IEh,(C)[ and 0 < i < L, let Qi(a (l)) denote the set

of states in Eh,+l(C) that are adjacent to a (ll. For I > IEh,(C)I, Qi(a (t}) = 0.

Then in the ACS-array implementation of a Viterbi decoder, paths to transfer

the state metrics exist between ACS-I and all the ACS circuits that correspond

to the states in

Qo(a "1) v Q_(a(t)) U... U QCL-_I (_"))' (10.5)

The above set, denoted _ti), defines the connectivity of ACS-I in the ACS-array

corresponding to state a (_). We call 10('_1and _(t} & log z 101,11the connectivity

and connectivity dimension of the ACS-/, respectively. The connectivities of

ACS circuits determine the areas on an IC chip needed for wiring [10, 38]. This

area should be kept as small as possible.

The ACS-connectivity can be reduced by using a non-minimal trellis with a

proper number of parallel isomorphic subtrellises. With such a trellis, the ACS

circuits can be divided into blocks such that the ACS circuits corresponding to

states in a single subtrellis form a block. A particular ACS circuit only needs



THEVITERBI AND DIFFERENTIAL TRELLIS DECODING ALGORITHMS 185

to transferitsmetric to a subset of ACS circuitswithin itsown block. This

greatlyreduces the ACS-connectivity and hence the hardware complexity and

the wiringarea on the IC chip.

10.3.5 Branch Complexity

The decoding speed of a Viterbi decoder depends on the total number of

branches in the trellisto be processed and how fastthey are being processed.

Ifthe processingload isshared by many ACS circuitsatany time instant,then

each ACS circuitwillcarry a small amount of processingload. This willspeed

up the decoding process.Therefore,a more meaningfulmeasure ofbranch com-

plexityisthe number ofbranches to be processed by an ACS circuit[73,101].

As pointed out earlierin thissection,the number ofactiveACS circuitscan

be increasedby paralleldecomposition of a minimal trellis.However, parallel

decomposition, in general,resultsin an increasein the number of composite

branches ina trellissection.Ifthe rate ofincreaseofactiveACS circuitsislarger

than the increaserate ofcomposite branches, then the number of branches to

be processed by each ACS circuitwilldecrease. The processing load of an

ACS circuitat time-h/ is determined by the number of composite branches

divergingfrom itscorresponding statein Eh,(C). Therefore the totalnumber

of branches to be processed by an ACS circuitisdetermined by the diverging

branch dimension profile(DBDP) of the trellisbeing used inthe design.

Consider the minimal 8-sectiontrellisof the (64,42) RM code, RMs,s. The

statespace dimension profileof thiscode is(0,7,I0,t3,10,13,10,7,0) and its

DBDP is (7,6,6,3,6,3,3,0). Consider section-2of the trellis.The number

of composite branches in this sectionis213. However, the number of active

ACS circuitscorresponding to the statesof the trellisat the end of section-1

is2T = 128. Since each state has 64 composite branches diverging from it,

each activeACS circuitmust process 64 composite branches. Now consider

the paralleldecomposition of thisminimal trellisinto128 parallelisomorphic

subtrellises.The resultantnon-minimal trellishas a statespace dimension

profile(0,13,13,13,10,13,13,13,0) and each subtrellishas a state space di-

mension profile(0,6,6,6,3,6,6,6,0). The DBDP of thisnon-minimal trellis

is(13,3,3,3,6,3,3,0). All the components of thisDBDP, except for the first

one,are smallerthan (orequal to) the correspondingcomponents ofthe DBDP



186 TRELLISES AND TRELLIS-BASED DECODING ALGORITHMS FOR LINEAR BLOCK CODES

for the minimal 8-section trellisof this code. Consider section-2 of this non-

minimal trellis.The total number of composite branches is now 2le, a large

increase from 213 for the minimal trellis.However, all the 2I_ ACS circuits

at time-hl are active and they share the processing load. Each ACS circuit

processes only 8 composite branches, compared to 64 for the minimal trellis.

It is the same at the other time instants, except at time-h4, where each active

ACS circuit needs to process 64 branches, the same as for the minimal trellis.

Therefore, the number of operations performed per ACS circuit is smaller for

a Viterbi decoder designed based on the above non-minimal trellis.Reducing

the diverging branch profilealso results in a reduction of ACS-connectivity and

hence a reduction in implementation complexity and wiring area on an IC chip.

Based on the above analysis and discussions, we may conclude that in design-

ing a hardware Viterbi decoder for a specificlinear block code, ifthe minimal

trellisfor the code is not desirable, then a non-minimal trelliswith proper

structural properties should be considered.

10.4 DIFFERENTIAL TRELLIS DECODING

The Viterbi algorithm was firstdevised for decoding convolutional codes. This

decoding algorithm is based on the simple principle of add-compare-select

(ACS) to process the code trellisand eliminate the less probable paths at each

trellislevel. This simple ACS principle has been used for implementing Viterbi

decoders over the last two decades. However, a trellis-baseddecoding algo-

rithm for convolutional codes can be devised based on a differentprocessing

principle, namely compare-select-add (CSA). This decoding algorithm is

devised based on a specificpartition of a trellissection and the CSA processing

principle. It ismore efficientthan the conventional Viterbi decoding algorithm.

This decoding algorithm is called the differential trellis decoding (DTD)

algorithm [32].

Consider a rate-1/n (n, 1,m) convolutional code of memory order m. The

encoder of this code has one input and n outputs. Let a = (ao,ax,... ,ai,...)

be the input information sequence. The n corresponding output code sequences

are

• (1) (1) ,u(_),iu(I) _'tl 0 ,111 , ....



T.EwrER.I.,.NOD,FF,  NT, LTRELUSDECOD,NG.'.LGOR,T.MS

u('0 r, (") . (") ,ul"),..).

187

At time-i, the input to the encoder is a_ and the output of the encoder is a

block of n code bits ' (1) (2) - (")_ The trellis for this code consists of_Bi ,Bi ,''',_i 1"

2 'n states with two branches entering and leaving each state at any time (or

level) greater than rn.

A rate-1/n (n, 1, rn) convolutiona] code is said to be antipodal if, in the

generator matrix of (9.7), Go = G,, = [11... 1]. Most of the best rate-l/r=

convolutional codes are antipodal. For an antipodal convolutional code, the two

branches entering (or leaving) a state in its code trellis are one's complement

to each other, i.e., if one branch is labeled with ' (l) . (2) . (,-,),,Lui ,=i ,"',=i ), then the
_(t) _ (':') _ (.),

other branch is labeled with (1 @ u_ , 1 _ u i ,. .. ,1 _ u i ], where @ denotes

the modulo-2 addition.

At time-i, the state of the encoder is defined by and labeled with the infor-

mation bits (a,-l,ai-2,... ,a,_,,_), stored in the input shift register. Consider

the trellis section from time-/ to time-(i + 1) for i >_ m. This section can

be partitioned into 2 "_-1 two-state fully connected subtrellises with the

following structural properties: (1) the two states at time-/ are labeled with

(a,-1,a_-2,...,a,-,,_+1,0)u(I)u(2) u(') (O,a,-1,a_-2,...at-,_+1)
t _ | P'''_ t

...,_u,

(ni_l, Gi_2, . Oi_m+l, 1 ) U(I) (2) t_(,t) (1, _tt_l, __2,..., ai_,n+l )• ._ = ,tL= 1.'', i

Figure 10.1. The structure of a 2-state subtrellis.



188 TRELLISES AND TRELLIS-BASED DECODING ALGORITHMS FOR LINEAR BLOCK CODES

(ai-1,ai-2,...,ai-,_+1,O) and (ai-1,ai-2,...,a/-,_+t,1),respectively;(2)the

two statesat time-(/+ I) are labeledwith (O,ai-l,ad-2,...,ad-m+t) and (I,

ai-l,ai-2,...,ai-m+l), respectively;(3) the branches connecting the state

(ai-I,ai-2,...,ai-m+ I,0) to the states(0,ai-I,ai-2....,ai-m+ l)and (i,ai-I,

ai-_,...,ai-m+t) are labeledwith the code blocks (u?),u_2),...,u_'_))and

(I • u_1),1 • u_2),...,i_ ul")),respectively;and (4) the branches connect-

ing state (ai-l,ai-2.....a/_,,_+1,1)to the states(O,ai-l,al-2,...,ai-,,_+1)

and (1,ai-t,ai-2,...,ai-,,+t)are labeledwith the code blocks(i • u_t),1 •

u_2),...,1 _ u_")) and (u_I),u_2),...,ul'0),respectively.The structureofsuch

a two-statesubtrellisisdepicted in Figure 10.1. These 2"-I fullyconnected

subtrellisesare commonly calledabutterflies_.

Based on the above state grouping and trellispartitioningbetween time-

i and time-(/+ I),each subtrelliscan be labeledby an (m - l)-tuplect =

(ai-t,ai-2,...,ai-m+t). In each subtrellis-ct,the statesat time-/and the

statesat time-(/+ 1) are representedby (or,ai-m) and (al,or),respectively,

with ai-,_,ai E {0, 1}.

The decoding algorithm to be presented in the following is based on the

above trellis partition. Assume that BPSK is used for transmission and each

BPSK signal has unit energy. A code sequence is mapped into a bipolar signal

sequence for transmission. The i-th code block (ul 1), u12),..., ttl ")) is mapped

into the following bipolar sequence:

(2 T- 1,2 I 1,...,2C '/- i) (10.6)

Suppose correlationisused asthe decoding metric.Let ri = (r_t),rl_),...,r_'_))

be the receivedblock inthe intervalbetween time-/and time-(/+ 1).Itfollows

from properties (3), (4) of a butterfly subtrellis given above, that the four

branch metrics between time-/and time-(/+ 1) in subtrellis-ot take two opposite

values :t=N_+I, with
rl

° =°Z( Ij' -N_+ t 2u I) r, . (10.7)

j=l

Let Mi(ct, O) and Mi(ct, 1) denote the cumulative correlation metrics that

have survived at time-/for states (a,0) and (ct, 1), respectively. Define

A?+t(O,1)& Mi((x,O) - Mi(o(,1) (10.s)



THE VITERBI AND DIFFERENTIAL TRELLIS DECODING ALGORITHMS 189

as the difference between these two metrics computed at time-(/+ 1). Then

at time-(/+ 1), the difference between the cumulative metric candidates cor-

responding to transitions from states (c_,0) and (c_, 1) to state (a_, c_) is given

by

DT+ 1 (a_) = A_'+I (0, 1) - 2(2a{ - t)N_+ 1 (10.9)

for a_ e {0, 1}.

Note that MLD maximizes the correlation metric. Hence, from (10.9), we

conclude that at state (hi, ¢_) of subtrellis-_, we select the branch diverging

from state (_, 0) if A_'+ 1 (0, 1) > 2 (2a_- t)N_%l, and the branch diverging from

state (a, 1) otherwise. Therefore, this decision can be made by first determining

IM ,NI -- max{lA%l(0,1)l,12N?+ll}, (10.10)

and then checking the sign of the value Mz_.A, corresponding to this maximum,

denoted sgn(Mz_,N). Based on the comparison result given in (10.10) and

sgn(Ma,N), the selection of the surviving branches into states (a,,(_) with

a, E {0, 1} is made. All the four selections of surviving branches are shown in

Figure 10.2. The selection rules are given below:

(1) If IA,%t(0, 1)1 > 12N?.._I and A_+l(0, 1) > 0, the two branches diverging

from state (er, 0) into states (0, ct) and (1, ex) are selected as the surviving

branches.

(2) If lAb'+l(0, 1)] > ]2N_+1{ and A_+l(0 , 1) < 0, the two branches diverging

from state (¢x, 1) into states (0, a) and (1, a) are selected as the surviving

branches.

(3) If [A_+l(O, 1)[ < [2.N',°.1[ and 2N_ 1 > 0, the branch diverging from state

(,%0) into state (0, c_) and the branch diverging from state (cx, 1) into

state (1, c_) are selected as the surviving branches.

(4) If [A7+1(0,£)1< i2N  l and 2N 1 < 0, the branch diverging from state

(c_, 0) into state (1, c_) and the branch diverging from state ((_, 1) into

state (0, _) are selected as the surviving branches.

For each subtrellis-cq the decoding process from time-/ to time-(/+ 1) can

be carried out as follows:



190 TRELLISES AND TRELLIS-BASED DECODING ALGORITHMS FOR LINEAR BLOCK CODES

• If IA_+_(o,1)1> 12N_+_I:

•i_A_+_(o,_)> o:_

•Else

•Else

*If N_%1 > 0:

•Else

Figure 10.2. Branch select;ons for subtrellis-_.



THE V[TERBI AND DIFFERENTIAL TRELLIS DECODING ALGORITHMS 191

Step-1 Compute the four possible branch metrics -I-N_+ I (preprocessing) and

scale them by 2.

Step-2 From Step-l, identify 2N/_ 1 and compute the metric difference

1).

Step-3 Compare [A_+l(O ,1)1 with [2N_+ll.

Step-4 Based on the comparison result of Step-3, determine either

sgn(A_+,(0, 1)) or sgn(N_,), and select the surviving branches based

on the selection rule shown in in Figure 10.2.

Step-5 For each state at time-(/+ 1), update the new survivor metric based

on Step-4.

The above decoding algorithm is called the differential CSA-algorithm. The

metric computations in Step-l, which are also performed by the conventional

Viterbi algorithm, can be preprocessed since at most 2 "-1 values must be

computed. Also, if the branch from state (c_, a, .... ) to state (ai, o_) survives,

the surviving metric at state (a,, c_) in Step-5 can be computed as follows:

M,÷l(a,,a) = Mi(c_,ai-m) + (2al-m - 1)(2a, - 1)Y_+ 1. (10.11)

Note that the scaling by 2 of the preprocessed values d-Ni_ 1 at Step-1 and

the sign checks at Step-4 are elementary binary operations (scaling is done by

shifting the register once). The real number operations are performed at Step-2,

Step-3, and Step-5. There are 2m-1 subtractions at Step-2, 2 ''-I comparisons

at Step-3 and 2m additions at Step-5. Therefore a total of 2.2 m real number

operations is required to process a trellis section. However, after Step-l,

the conventional Viterbi algorithm requires 2''+1 additions to evaluate the

cumulative metrics for 2m states and 2 'n comparisons to determine the 2 TM

survivors. This results in a total of 3-2 "_ real number operations to process

a trellis section. As a result, the the differential CSA-algorithm requires about

1/3 less real number operations than the conventional Viterbi algorithm for

rate-1/n antipodal convolutional codes as well as high-rate punctured codes

obtained from them.



192

Example 10.2

tern

TRELLISES AND TRELLIS-BASED DECODING ALGOR ITHMS FOR LINEAR BLOCK CODES

Consider the (2,1,6) convolutional code with generating pat-

which is the most commonly used convolutional code. This code is antipodal.

Its trellis consists of 64 states and can be decomposed into 32 fully connected

2-state subtrellises as shown in Figure 10.1. Since n = 2_ at time-i, there are

four possible branch metrics of the form :k(r_,l 4- r_,2), which are computed

with two real additions, and then scaled by 2. For this code, at time-i, the

Viterbi algorithm computes 128 cumulative metric candidates and then per-

forms 64 comparisons, so a total of 192 real value operations is required. The

differential CSA-algorithm first computes 32 metric differences at Step-2, and

then performs 32 comparisons at Step-3. Finally, based on the 32 sign checks

of Step-4, 64 surviving cumulative metrics are updated at Step-5. As a result,

only 128 real value additions are executed. Therefore, 64 real value operations

are saved by the differential CSA-algorithm at the expense of 32 sign checks

and 2 scalings by 2.

In practical applications, high-rate convolutional codes are often constructed

from a low-rate (n, 1, m) convolutional code by puncturing. The trellis for the

punctured code has the same structure and state complexity as that of the

original rate-i/n convolutional code, except that the lengths of its sections vary

periodically. As a result, the decoder for the rate-I/n convolutional code can be

used for decoding the punctured code. If the base rate-1/n convolutional code is

antipodal, then any punctured code constructed from it is also antipodal. Each

trellis section for the punctured code can be partitioned into 2'_'-1 butterfly

subtrellises in exactly the same manner as described above. The two branches

leaving (or entering) a state in a butterfly subtrellis are one's complement

of each other. Consequently, the differential CSA-algorithm can be used for

decoding the punctured code. All the rate-k/(k + 1) punctured convolutional

codes presented in [16] are time-varying antipodal codes. Also, this construction

can be generalized to the case where k rate-1/n base convolutional codes rather

than only one are periodically selected, with period k. Again, if the resulting

time-varying punctured code is antipodal, then the differential CSA-algorithm

can be used.

[1 1 0 1 1 1 1 1 0 0 1 0 1 1],



THE VITERBI AND DIFFERENTIAL TRELLIS DECODING ALGORITHMS 193

The application of the differential CSA-algorithm to rate-k/n convolutional

codes with k > I also allows 1/3 real value computation saving after proper

pairing of the states in the code trelliJ [32 I. The differential CSA-algorithm

can also be applied e_ciently to trellis decoding of block codes. For example,

trellis decoding based on the 4-section trellis diagram for the (16, 5) RM code

requires 59 real value operations for the differential CSA-algorithm and 95 real

value operations for the conventional Viterbi algorithm.




